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INTRODUCTION 
 

Myelodysplastic syndromes (MDS) are clonal bone marrow failure (BMF) disorders 
defined by blood cytopenias due to ineffective hematopoiesis, genomic instability, and a 
predisposition to acute myeloid leukemia (AML). The most commonly recurring genomic 
alteration in MDS is deletion of chromosome 5q (del(5q)). MDS patients with an isolated del(5q) 
presenting with anemia, neutropenia, and elevated platelets associated with dysplastic 
megakaryocytes are considered to have 5q- syndrome. The majority of MDS patients with 
del(5q) do not exhibit these particular symptoms and, instead, are referred to as “del(5q) MDS”. 
We have recently identified miR-146a, which target the TRAF6 arm of the innate immune 
pathway, a gene within the deleted region in del(5q) MDS. We posit that multiple genes on chr 
5q coordinate TRAF6 activation in del(5q) MDS. A search of annotated genes within or near the 
CDRs revealed a known inhibitor of TRAF6, TIFAB, on band q31.1. We hypothesize that 
deletion of TIFAB promotes activation of the TRAF6 complex in human CD34+ cells resulting in 
hematopoietic defects resembling MDS and AML with del(5q). The overall objectives of this 
proposal are to (1) determine whether loss of TIFAB in human CD34+ cells contributes to MDS 
in mice; (2) to investigate whether deletions of TIFAB and miR-146a cooperate to activate 
TRAF6 in MDS; and (3) to determine the consequences of TIFAB deletion on signal 
transduction in human CD34+ cells, and whether these could explain features of MDS. In 
preliminary data from the first year of the proposal, we have evidence that TIFAB exhibits tumor 
suppressor-like functions in human hematopoietic cells. Our key observations show that 
knockdown of TIFAB in human CD34+ hematopoietic stem/progenitor cells results in increased 
survival and altered hematopoietic progenitor function, TIFAB inhibits TRAF6 protein 
expression and activation, resulting in lower NF-κB activation, and TIFAB expression impacts 
leukemic cell survival, growth and progenitor function. Given that TIFAB is deleted in many 
MDS and AML patients, these findings could have major implications in MDS and AML 
subtypes with deletions of chr 5q. The observation that del(5q) results in inappropriate activation 
of TRAF6 provides a strong rationale to study the contribution of TIFAB to deregulation of the 
TRAF6 pathway in MDS.  
 
 

BODY 
 
Task 1. Plasmid constructs and validation (months 1-4): 
1a. For knockdown of TIFAB in human CD34+ or MDS/AML cell lines, we used RNAi-
mediated gene silencing. Lentiviral vectors encoding two independent shRNAs targeting human 
TIFAB were purchased from OpenBiosystems. The bicistronic lentiviral vector contains a 
microRNA-adapted shRNA and a CMV-driven turboGFP (Figure 1A)1.  
1c. For qRT-PCR and immunoblot analysis to determine TIFAB knockdown, two independent 
shRNAs targeting TIFAB (#88 and #89) and a scrambled control vector  (shCTL) were 
transduced into human HL60 and THP1 leukemia cell lines. Two days post transduction, cells 
were sorted for GFP expression and expanded for an additional 2 days in culture (Figure 1B). 
RNA was collected and examined for TIFAB knockdown by qRT-PCR (Figure 1C). Our 
preliminary data indicates that TIFAB, a gene within the deleted segment on chr 5q2, is 
expressed approximately half in marrow cells from del(5q) MDS patients as compared to age-
matched normal control marrow cells (in original grant proposal). To mimic haploinsufficiency 
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of TIFAB as in human del(5q) MDS/AML, we selected shRNAs that exhibited approximately 
50% knockdown of TIFAB mRNA. Although shRNA clone #88 did not result in significant 
knockdown, shRNA clone #89 reduced expression of endogenous TIFAB by 40% in both HL60 
and THP1 cells (Figure 1C).  
 To circumvent lack of validated TIFAB antibodies, we created a FLAG-TIFAB fusion 
cDNA for overexpression using a retrovirus (pGK-GFP; Figure 1D). In addition, we were able to 
validate commercial antibodies for TIFAB specificity. HL60 cells were transduced with empty 
vector (pGK-GFP) or FLAG-TIFAB and sorted for GFP expression. Lysates were prepared and 
analyzed by immunoblotting with anti-FLAG (M2) and anti-TIFAB (Abgent, RB28469) 
antibodies. As shown, FLAG antibody readily recognized the FLAG-TIFAB protein product at 
17 KD (Figure 1D). Similarly, the TIFAB antibody recognized endogenous and FLAG-TIFAB 
(Figure 1D). Using the validated TIFAB antibody, an immunoblot analysis was performed on 
THP1-transduced cells expressing shTIFAB and confirmed that TIFAB protein was reduced by 
approximately 50% (Figure 1E). 
1d. The original plan involved knocking down both miR-145 and miR-146a in primary 
hematopoietic cells using a miRNA decoy retroviral vector. Given that more recent findings 
indicate that miR-146a specifically targets the TRAF6 pathway and its deletion results in many 
MDS-like features in mice3,4, we have opted to clone only the miR-146a decoy. We have 
generated a decoy that knocks down the expression of miR-146a only. To confirm knockdown, 
miR-146a decoy was transduced into human leukemia cells (TF1) and miR-146a expression was 
measured by qRT-PCR. As shown in Figures 1F, expression of the miR-146a decoy results in 
50% reduction in miR-146a expression. We also confirmed whether loss of miR-146a in TF1 
cells results in increased expression of its target, TRAF6. TRAF6 protein increased by ~2.5-fold 
following knockdown of miR-146a (Figure 1G). Since TRAF6 is a downstream activator of NF-
κB following IL-1b stimulation, we determined whether TF1 cells expression the miR-146a 
decoy exhibited increased basal and IL-1b-stimulated NF-κB activity. Nuclear lysates were 
collected from control and miR-146a decoy-expressing TF1 cells and evaluate for NF-κB (p65) 
DNA binding using an ELISA-based DNA-binding assay (Invitrogen). Knockdown of miR-146a 
results in increased p65 DNA-binding under basal and IL-1b-stimulated conditions (Figure 1H).  
Now that the miR-146a is validated, we have started cloning the red fluorescent protein (RFP) in 
place of green fluorescent protein (GFP).  
 
Task 2. Expression analysis of TIFAB and TIFA in hematopoietic cells (months 1-6): 
2a. Normal expression patterns of TIFA and TIFAB were investigated in human marrow 
subpopulations. To determine whether TIFA and TIFAB are expressed higher in more primitive 
CD34+ cells or within the differentiated CD34- compartment, normal marrow cells from five 
donors were fractionated on a CD34-immunolabeled magnetic column (Stem Cell Technologies) 
to isolate CD34+ and CD34- cells. RNA was isolated and converted to cDNA for qPCR analysis. 
Expression of TIFA was similar in CD34+ and CD34- cells (Figure 2A). In contrast, expression 
of TIFAB was significantly higher in the more primitive CD34+ marrow cells (Figure 2A). This 
observation suggests that under normal conditions, TIFAB expression is highest in CD34+. 
However, in del(5q) MDS cells, TIFAB expression is reduced in CD34+ cells by approximately 
50%. Since the human CD34+ fraction is a mixture of hematopoietic stem and progenitor cells, 
we further fractionated this compartment into the HSC-containing CD34+/CD38- fraction and 
the HPC containing CD34+/CD38+. As shown in Figure 2A, TIFAB expression is primarily 
expressed in the progenitor compartment (CD34+/CD38+). Examination of differentiated 
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myeloid (CD33) and lymphoid (CD3 and CD20) marrow cells, revealed that TIFAB is also 
expressed in CD20 B-cells. Since TIFA expression did not differ between primitive and 
differentiated human marrow subpopulations, we did not further examine its expression 
following subfractionation.  
 Normal expression patterns of TIFAB were also investigated in mouse marrow 
subpopulations. As for the human marrow cells, primitive (lineage negative) and differentiated 
(lineage positive) marrow cells from three BoyJ mice were fractionated on a magnetic column 
(Stem Cell Technologies). Expression of TIFAB was significantly higher in the more primitive 
lineage negative marrow cells (Figure 2B). After further subfractionation by FACS, TIFAB was 
expressed higher within the progenitor factions (lineage negative/Kit+ and lineage 
negative/Sca+) as compared to the stem cell-containing fraction (lineage negative/Kit+/Sca+), 
consistent with the expression of TIFAB in human marrow cells. Examination of differentiated 
myeloid (Mac1 and Gr1), erythroid (Ter119) and lymphoid (B220) marrow cells, revealed that 
TIFAB is also expressed highest in erythroid and Gr1-myeloid cells (Figure 2B). 
 Immunoblot analysis of the human and mouse subfractions have been attempted. Due to 
weak immunoreactivity of the TIFAB antibody, we were unable to detect bands corresponding to 
TIFAB. We are currently evaluated additional commercial TIFAB antibodies and preparing to 
combine subpopulations from multiple donors to overcome the limitations with the current 
antibody. 
 
Task 3. Isolation and infection of CD34+ cells (months 4-18): 
3a/b. Human umbilical cord CD34+ cells were obtained and cultured in vitro. CD34+ cells were 
transduced with shTIFAB-GFP or miR-146a decoy-GFP (Figure 3A), sorted, and evaluated for 
colony formation and growth in culture (see task 4).  Transduction efficiency was 4% for 
shTIFAB and 10% for miR-146 decoy (Figure 3A). We are currently optimizing the transduction 
efficiency in order to collect enough cells for RNA (qRT-PCR) and protein expression 
(immunoblot) analysis.  
 
Task 4. Application of in vitro hematopoietic assays (months 8-12): 
4a. Transduced shTIFAB (and control) CD34+ cells from Task 3 were used to determine the 
clonogenic potential in methylcellulose containing differentiation cytokines (IL3, IL6, SCF, Epo 
(for myeloid progenitors). As shown in Figure 3B, the number of colonies formed following 
knockdown of TIFAB was slightly (but not significantly) reduced as compared to control-
transduced cells. When the proportion of colony types was examined, knockdown of TIFAB 
resulted in slight expansion of CFU-G colonies at the expense of BFU-E and CFU-GEMM 
colonies (Figure 3B). These observations suggest that lower levels of TIFAB affect 
hematopoietic differentiation or survival of colonies in methylcellulose. CD34+ cells transduced 
with shTIFAB or control were also examined for survival following 4 days of culture in liquid 
media. Consistent with our hypothesis that loss of TIFAB enhances survival of hematopoietic 
cells, knockdown of TIFAB in CD34+ cells results in reduced AnnexinV-positive cells (35% 
versus 25% AnnexinV staining; Figure 3C). Additional CD34+ donor cells will be analyzed to 
confirm these observations. 
 
Task 5. Application of bone marrow transplantation assays and analysis (months 8-36): 
This task as not been initiated. 
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Task 6. Identification of changes in TRAF6 activation and NF-κB signaling by TIFAB 
(months 10-14): 
6a. It was previously reported that TIFAB may function by suppressing TRAF6-mediated NF-
κB activation5,6. However, the mechanism by which TIFAB may inhibit TRAF6 and/or NF-κB is 
not known. To investigate the consequences of TIFAB expression on TRAF6 activation, HL60 
cells were transduced with FLAG-TIFAB retrovirus (pGK-GFP). A convenient measure of 
TRAF6 activation is lysine (K)-63 linked autoubiquitination7. To measure TRAF6 
autoubiquitination, TRAF6 was immunoprecipitated (IP) with a TRAF6 antibody and 
immunoblotted for ubiquitin (Ub). In cells overexpressing TIFAB, TRAF6 ubiquitination was 
significantly reduced (Figure 4A), an indication of less active TRAF6. In HL60 and THP1 cells 
expressing TIFAB, we also detected less phosphorylated IKKβ (the catalytic subunit of the NF-
κB kinase complex) (Figure 4B). Interestingly, we observed that TRAF6 protein levels were also 
reduced in TIFAB-expressing cells (Figure 4A). Since it has not been reported that TIFAB 
affects TRAF6 protein expression, we examined this observation in more detail. To determine 
whether knockdown of TIFAB results in increased TRAF6 levels, we examined HL60 cells 
expressing shTIFAB and measured TRAF6 protein by immunoblotting. As shown in Figure 4C, 
HL60 cells with knockdown of TIFAB exhibited approximately 3-fold increase in TRAF6 
protein. To exclude the possibility that the effect of TIFAB on TRAF6 is an artifact of leukemic 
cells or regulation of the TRAF6 promoter, we cloned TIFAB and TRAF6 into pcDNA3.1 
expression vectors and transiently cotransfected A293 cells. As expected, transfection of TRAF6 
results in increased active (e.g., ubiquitinated) forms of TRAF6 (Figure 4D). However, co-
transfection of TRAF6 and TIFAB resulted in a dose-dependent inhibition of TRAF6 
autoubiquitination by TIFAB (Figure 4D). On the same cells, we also examined the levels of 
total TRAF6 protein. Consistent with less active TRAF6, transfection of TIFAB coincided with 
less total TRAF6 protein (Figure 4E) despite expression from a constitutively active promoter. 
Future experiments will determine the effects of TIFAB on TRAF6 in normal CD34+ and on 
TRAF6 target genes (IL-6 and TNFa) in CD34+ and leukemic cell lines.  
6b. One of the main pathways activated by TRAF6 is the NF-κB complex. Although multiple 
signals converge on NF-κB (e.g., TLR4 and TNFR), downstream modulators instruct the 
appropriate signal to NF-κB. For example, TRAF6 mediates NF-κB activation following LPS 
stimulation of TLR4, but not via TNFR stimulation. In contrast, TRAF2 mediates NF-κB 
activation following TNFa simulation of TNFR (Figure 4F). Conditions are being optimized to 
allow for measuring NF-κB activation in primary CD34+ cells. In the mean time, we have 
performed experiments in human cell lines to better understand the role of TIFAB on NF-κB. 
First we wanted to determine whether TIFAB is a general inhibitor of NF-κB or is a specific 
inhibitor of TRAF6-mediated activation of NF-κB. For these experiments, we transfected A293 
cells with a κB-site containing NF-κB luciferase reporter and TIFAB. Following a 24 hr 
transfection, cells were treated with LPS (1 ug/ml) or TNFa (1 ng/ml) for an additional 6 hours 
and then assessed for luciferase activity. As shown in Figure 4G, stimulation with LPS resulted 
in 3-fold increase in κB-luciferase activity. Cotransfection of TIFAB did not affect basal κB-
luciferase activity. However, cotransfection of TIFAB significantly repressed LPS-mediated 
activation of κB-luciferase activity. We next examined whether TIFAB affects TNFa-mediated 
activation of NF-κB, which does not depend on TRAF6. Stimulation with TNFa resulted in 20-
fold increase in κB-luciferase activity (Figure 4G). Interestingly, cotransfection of TIFAB did 
not suppress TNFa-mediated activation of κB-luciferase activity. This finding clearly reveals that 
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TIFAB inhibits NF-κB downstream of the TLR4 receptor, but not downstream of the TNFR, 
implicating TRAF6 as a key target of TIFAB. As discussed above, stable expression of TIFAB 
in THP1 and HL60 cells significantly reduced NF-κB activation as measured by phosphorylated 
IKKβ (Figure 4B). Current efforts are focused on utilizing alternative measures of NF-κB 
activation in CD34+ and cell lines, including nuclear localization and DNA-binding of the NF-
κB subunit p65, immunoblotting for phosphorylated versions of p65, and measuring select target 
genes by qRT-PCR. Although we are capable of transducing primary CD34+ cells (Figure 3A), 
our initial attempts resulted in transduction efficiencies that were too low to yield enough cells 
for biochemical assays. Once the transduction efficiencies are improved (which we anticipate to 
happen within the next 2-4 weeks), we will perform the NF-κB biochemical assays in the 
primary CD34+ cells.  
 
Task 7. Gene expression analysis (months 16-24). 
This task as not been initiated. 
 
Task 8. Validation of targets (months 24-36) 
This task as not been initiated. 
 
Extra Tasks: Measuring the cellular consequences of TIFAB expression on malignant cell 
growth and survival. 

Our first year of experiments evaluating the role of TIFAB in normal and malignant 
hematopoietic cell function revealed striking effects on TRAF6 and NF-κB. Although not 
directly proposed in the Tasks within the first year, we opted to determine the cellular 
consequences of TIFAB on malignant cell growth, cell cycle, and survival. For these 
experiments, HL60 cells were transduced with FLAG-TIFAB and cultured in normal growth 
serum conditions (10% FBS) or under starved conditions (1% FBS) (Figure 5A). Expression of 
TIFAB resulted in increased AnnexinV-positive cells under serum rich (9.2% versus 18.6% 
AnnexinV) or starved culture (14.4% versus 24.6% AnnexinV) conditions (Figure 5A). 
Consistent with reduced survival, TIFAB-expressing HL60 cells grew significantly slower in 
liquid culture when evaluated for 6 days (Figure 5B). In addition, cell cycle status was evaluated 
by propidium iodide incorporation. TIFAB expression resulted in fewer cells in the S- and 
G1/M-phase of the cell cycle (Figure 5C).  
 To determine whether TIFAB affects leukemic progenitor function, HL60 and THP1 
cells expressing TIFAB were plated into methylcellulose for colony formation. Although TIFAB 
only slightly reduced colony formation in HL60, TIFAB significantly reduced colony formation 
in THP1 cells (Figure 5D). Interestingly, knockdown of TIFAB enhanced colony formation in 
HL60 cells, but not in THP1 cells (Figure 5E). These results indicate that these cells are sensitive 
to variations in TIFAB expression, and support our hypothesis that TIFAB functions as a tumor 
suppressor-like protein in hematopoietic cells. 
 
 

KEY RESEARCH ACCOMPLISHMENTS 
 

- Identified an shRNA lentiviral vector containing a GFP reporter that knocks down the 
expression of human TIFAB by approximately 50%. 
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- Successfully transduced normal CD34+ cells and human leukemic cell lines to evaluate 
TIFAB knockdown with the shRNA. 

- Measured expression of TIFA and TIFAB in normal human and mouse hematopoietic 
subpopulations. Identified that TIFAB is enriched in hematopoietic progenitor cells.  

- In preliminary experiments, knockdown of TIFAB in human CD34+ cells resulted in 
increased CD34+ survival (less AnnexinV+ cells) and altered progenitor differentiation 
in methylcellulose. 

- Discovered that TIFAB suppresses active TRAF6 and reduces TRAF6 protein expression 
in human cell lines. 

- Determined that TIFAB suppress NF-κB activation following LPS/TRAF6-mediated 
stimulation, but not TNFa/TNFR. 

- Show that TIFAB expression in human leukemic cells results in impaired growth, 
survival, and leukemic progenitor function, underscoring a tumor suppressor role for 
TIFAB. 

 
REPORTABLE OUTCOMES 

 
- Accepted Review Article:  
Fang J, M Varney, and DT Starczynowski. Implication of miRNAs in the pathogenesis of MDS.  Current 
Pharmaceutical Design. May 7, 2012 
 
- Accepted Research Article: 
Fang J, G Rhyasen, L Bolanos, C Rasch, M Varney, G Jansen, J Cloos, C Rigolino, A Cortelezzi, EN 
Oliva, M Cuzzola, DT Starczynowski. Cytotoxic effects of Bortezomib in Myelodysplastic 
syndrome/Acute Myeloid Leukemia depend on autophagy-mediated lysosomal degradation of TRAF6 
and repression of PSMA1. Blood. June 8, 2012 
 
- Abstracts at Conferences: 
Varney M, L Bolanos, J Fang, G Rhyasen, J Inoue, DT Starczynowski. Deciphering the role of TIFAB in 
del(5q) Myelodysplastic Syndromes. Midwest Blood Club, Indianapolis, IN. March 15, 2012 
 
Varney M, L Bolanos, J Fang, G Rhyasen, J Inoue, DT Starczynowski. Deciphering the role of TIFAB in 
del(5q) Myelodysplastic Syndromes. Myeloid Meeting, Cincinnati, OH. May 7, 2012 
 
 

 
CONCLUSIONS 

 
The first year of the project has yielded many interesting results, most of which support 

our original hypothesis, and allowed us to continue with the majority of goals in the Statement of 
Work. Overall, the experiments suggest that TIFAB, a novel and uncharacterized protein, 
exhibits tumor suppressor-like functions in human hematopoietic cells. Our key observations 
show that (1) TIFAB is primarily expressed in hematopoietic progenitor cells (rather than in 
primitive hematopoietic stem cells or mature blood cells; (2) knockdown of TIFAB in human 
CD34+ hematopoietic stem/progenitor cells results in increased survival and altered 
hematopoietic progenitor function; (3) TIFAB inhibits TRAF6 protein expression and activation, 
resulting in lower NF-κB activation; and (4) TIFAB expression impacts leukemic cell survival, 
growth and progenitor function. Given that TIFAB is deleted in many MDS and AML patients, 
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these findings could have major implications in MDS and AML subtypes with deletions of chr 
5q.  

As indicated above, majority of the goals in the Statement of Work have been 
accomplished for the first year of the proposal. In addition, our ongoing experiments support our 
hypothesis, permitting us to continue with our original outline of experiments. However, there 
have been a few minor alterations to the Statement of Work: 

- We have limited our analysis of TIFA as it appears that TIFAB has a major effect on 
TRAF6 independent of TIFA levels. In addition, TIFA expression did not differ in 
hematopoietic subpopulations. As such, we propose to delay examining TIFA’s potential 
role in linking TIFAB and TRAF6.  

- We have opted to focus on miR-146a and not on miR-145 and miR-146a. At the time of 
original submission, we expected that knocking down both miRNAs is necessary for 
mediating an MDS-like disease. However, more recent publications indicate that 
knockdown of miR-146a is sufficient to induce an MDS-like disease in mice. As such, 
we propose to focus on the cooperation of miR-146a and TIFAB loss in human 
hematopoietic cells. 

- In the Statement of Work we did not propose to use human cell lines to validate gain/loss 
of TIFAB. As shown in our preliminary data (“Extra Tasks”), we find convincing and 
reproducible effects of TIFAB on human MDS/AML cell line function. We propose to 
include human cell lines (in addition to human CD34+ as originally proposed) to 
investigate the role of TIFAB on survival, proliferation, and TRAF6/ NF-κB signaling. 
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Figure 1: Task 1
A. Schematic representation of the pGIPZ lentiviral vector for knockdown of TIFAB is shown. On The bicistronic 
miRNA-based shRNA is driven by a CMV promoter and also expresses GFP for tracking expression in transduced 
cells. For simplicity, cPPT, WRE, Amp, pUC, and Ori are not shown. 
B. 1x106 HL60 and THP1 cells were transduced with control shRNA or shTIFAB (clone #88 and #89) and analyzed 
by FACS for transduction efficiency. Numbers represent percent GFP.
C. qRT-PCR was performed on HL60 and THP1 cells transduced with the indicated shRNA-containing lentiviral 
vectors. 
D. A schematic representation of FLAG-TIFAB protein. The FLAG sequences (yellow) and fork-associated domain 
�)+$��DUH�LQGLFDWHG��$QWLERGLHV�GLUHFWHG�DJDLQVW�)/$*��Į)��DQG�7,)$%��DPLQR�DFLGV��������Į7��DUH�KLJKOLJKWHG��
Numbers indicate the amino acid position. FLAG-TIFAB was subcloned into pGK-GFP retroviral vector and trans-
duced into HL60 cells. Protein lysates were evaluated for immunobloting with the indicated antibodies. 
E. THP1 cells were transduced with control shRNA or shTIFAB and analyzed for TIFAB expression by immunoblot-
ting with the indicated antibodies.
F. pGK-miR-146a-GFP decoy was transduced into TF1 cells. RNA was collected and analyzed by qRT-PCR for 
miR-146a expression. 
G. Protein lysates from miR-146a-decoy expressing cells were analyzed for TRAF6 expression by immunoblotting. 
H. TF1 cells transduced with miR-146a decoy were stimulated with IL-1b for 6 hours. Nuclear lysates were collected 
and NF-kB (p65) DNA binding was measured by an ELISA-based assay. *, P < 0.05

GFP

FS
C

shCTL shTIFAB#88 shTIFAB#89

THP1

HL60
63% 25% 43%

4% 3% 3%

neg control
0%

0%



10
8
6
4
2
0

14
12

TI
FA

B
 E

xp
re

ss
io

n

LSK LK LS

12

10

8

6

4

0

2

LS
K

Mac
1+

Gr1+

Te
r11

9+
B22

0+

1.2
1.0
0.8
0.6
0.4
0.2

0

1.4

lin
-

lin
+

A.

B.

Figure 2.

CD34
+

CD34
-

1.2
1.0
0.8
0.6
0.4
0.2

0

TI
FA

 E
xp

re
ss

io
n

1.6
1.4

1.2
1.0
0.8
0.6
0.4
0.2

0

2.5

2.0

1.5

1.0

0.5

0

6
5
4
3
2

0
1

CD34
+

CD34
-

CD34
+

CD38
-

CD34
+

CD38
+

CD34
-

CD33
+

CD3+
CD20

+

TI
FA

B
 E

xp
re

ss
io

n

Figure 2: Task 2
A. qRT-PCR was performed on human CD34+ and CD34- marrow subpopulations for TIFA and TIFAB expression. 
B. qRT-PCR was performed on mouse lineage-negative (lin-) and lineage-positive (lin+) marrow subpopulations for 
TIFAB expression.
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A. 1x106 human CD34+ cells were transduced with control shRNA or shTIFAB (clone #89), or pGK-GFP or pGK-
miR-146 decoy-GFP and analyzed by FACS for transduction efficiency. Numbers represent percent GFP.
B. 5x104 transduced CD34+ were plated in methylcellulose and analyzed for colony formation. Colonies were scored 
after 14 days.
C. Transduced CD34+ cells were cultured for 4 days and analyzed for AnnexinV staining by FACS. The histogram is 
a summary of 3 replicate experiments.
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Figure 4: Task 6
A. HL60 cells were transduced with empty vector or FLAG-TIFAB. TRAF6 was immunoprecipitated (IP) and lysates 
blotted with anti-ubiquitin. Pre-IP lysates (IB) were evaluated for TRAF6 and GAPDH expression.
B. HL60 and THP1 cells were transduced with empty vector or FLAG-TIFAB and analyzed by immunoblotting with 
the indicated antibodies. 
C. HL60 cells were transduced with control shRNA or shTIFAB and analyzed by immunoblotting for TRAF6 expres-
sion.
D. A293 cells were transfected with pcDNA3.1 (vector, 250 ng), pcDNA3.1-TRAF6 (250 ng), pcDNA3.1-FLAG-TIFAB 
(250 and 500 ng). TRAF6 was IP and lysates blotted with anti-ubiquitin. Pre-IP lysates (IB) were evaluated for 
GAPDH expression.
E. A293 cells were transfected with pcDNA3.1 (vector, 250 ng), pcDNA3.1-TRAF6 (250 ng), pcDNA3.1-FLAG-TIFAB 
(250, 500, 1000 ng). Lysates were analyzed by immunoblotting with the indicated antibodies. 
)��0RGHO�GLVWLQJXLVKLQJ�/36�7/5��DQG�71)D�71)5�DFWLYDWLRQ�RI�1)�ț%��:H�SURSRVH�WKDW�7,)$%�VHOHFWLYHO\�LQKLELWV�
TRAF6. 
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B-luciferase. Following transfection, cells were simulated with either LPS (1 ug/ml) or TNFa (1 ng/ml) for 6 hours. 
Values represent relative luciferase. 
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Figure 5: Extra Tasks
A. HL60 cells were transduced with empty vector or FLAG-TIFAB, sorted for GFP expression, and allowed to recover 
for 1 week. 1x105 cells were cultured with (10% FBS) or without (1% FBS) serum for 48 hours and then analyzed for 
AnnexinV by FACS. Shown is a representative experiment. 
B. HL60 cells expressing TIFAB were plated (1x105 cells/ml) and counted every 3 days. Viable cells were measured 
by Trypan blue exclusion. Shown is the summary of 2 independent experiments.
C. HL60 cells expression TIFAB were evaluated for cell cycle with propidium iodide. Shown is the summary of 3 
independent replicates.
D. 4x103 HL60 and THP1 cells expressing TIFAB were put into methylcellulose. After 10 days, colonies were 
counted. Shown is the summary of 3 independent replicates.
E. 4x103 HL60 and THP1 cells expression shTIFAB were put into methylcellulose. After 10 days, colonies were 
counted. Shown is the summary of 3 independent replicates.
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